

WWW.BITSTOC.COM BitStoc Electronics Page 1

 BITSTOC ELECTRONICS
TUTORIAL / USER MANUAL www.bitstoc.com

Raspberry Pi Experiment Guide Part 2 -
(GPIO) Example Inputs and Outputs

The Raspberry Pi is like an all-in-one small computer plus a microcontroller. You can use it as a
hardware prototyping tool to connect electronic components and module boards, write some code and
invent cool electronics!

If you came from the Arduino and other microcontroller platform, you are mostly familiar with the C
programming and Windows Desktop computer environment. When working with the Raspberry Pi, we
will also be able to run C program codes and the circuits we worked with Arduino.

There are a few programming languages to choose when programming the GPIO pins of the Pi but the
really useful and easy to use is the Python and C Programming languages. We will also be getting more
familiar with the Linux Computer environment thru the examples we will try out in the Examples
section.

WWW.BITSTOC.COM BitStoc Electronics Page 2

01 Tutorial Contents

In this Part 2 of the Experiment Guide we will be connecting electronics to the Pi’s GPIO pins such us
buttons, LED’s and sensors. It is important to understand first how the Pi processes simple GPIO
programming before we can explore to a more complex project. We compiled this experiment to learn
the ins and outs properly. We will program and run codes on the Pi to interact with the electronics using
Python and C programs. For this guide here’s what we will explore.

- Raspberry Pi Hardware GPIO pins Overview
- Overview of the GPIO Pin extension Adapter
- Preparing the Hardware parts
- Prepare the Software and install the needed libraries (Python libraries and C libraries)
- Perform experiment circuits and run codes in Python and C program

02 GPIO Pins Overview

The Raspberry Pi has 40 GPIO pins which means we can connect lots of external hardware to our Pi. The
40 pins are composed of the Power pins, GPIO (General Purpose Input Output) where we can connect
LED/buttons/sensors, UART Communication pins (Tx/RX), i2c interface pins (SDA, SCL), and also the SPI
interface pins. That means we can interface lots of electronic components, sensor board and other
modules.

Be sure to check out Part 1 of this Experiment Guide to setup your Raspberry Pi computer.

WWW.BITSTOC.COM BitStoc Electronics Page 3

Let’s take a look at the Pi’s each GPIO pins and know each of its uses and functionality so it will be easier
for us to connect our electronic components. Below is a picture of the individual pins found in the
Raspberry Pi’s boards GPIO 40-pin header and its individual pin descriptions.

Pin Numbering System

The image on the right shows the 3 types of pin numbering system when using the Pi’s GPIO pin.
Although with different numbering system they function the same as described in the Function column.
Let’s explained below.

GPIO.BOARD – Raspberry Pi pin numbering sequence based on the 2 rows of 20 male pins on the Pi
board. The numbering starts from top left then counting left to right. Thus, top left pin is number 1, next
to the right is number 2 and the last pin at the lower right is number 40.
GPIO.BCM - Pin numbering system matching the 40 pins on the Pi board to where these pins are
connected to main processor IC chip (BCM2837). BCM referred as Broadcom (the IC chip).
WiringPi - This numbering system could be used when we program the Pi with C programming language
using the wiringPi library.

The selected numbering system we will use here is the GPIO.BCM for all the experiments since it is more
specific to what pins on the main processor chip we are connecting. If you are adventurous you can try
the other system also after we run example from the GPIO.BCM configuration.

In the next part we will introduce an extension adapter where it becomes much easier to use our
numbering system.

WWW.BITSTOC.COM BitStoc Electronics Page 4

03 Raspberry Pi GPIO Pins Extension Adapter

In this kit we included a useful tool to even have an easier way to connect an electronics hardware to
you Pi, the Raspberry Pi GPIO Extension/Adapter - T Cobbler (includes 40-pin ribbon cable). This
Adapter gives a better visual of the Pi’s pins plus it helps not damaging our Pi computer. This Adapter
has printouts on the PCB of all the individual pin labels from the Pi GPIO. This pins labels on this GPIO
Extension Adapter are based on the GPIO.BCM pin configuration which are discussed from the previous
notes.

Insert the end cable of the Raspberry Pi T-Cobbler Adapter to the GPIO headers of the Pi following the
same orientation below. The cable with red colored line will be in the corner part. Then connect the
Extension Adapter board to the breadboard. For easier wiring place the first pins (5V and 3.3V) of the
Adapter board to the first rows of the breadboard.

WWW.BITSTOC.COM BitStoc Electronics Page 5

04 Prepare the Hardware parts

Prepare the hardware parts listed below for this experiment. All of these parts are already available if
you got the Raspberry Pi 3 Model B+ Starter Kit.

 Raspberry PI 3 Model B+ (B plus)

 Breadboard solderless - Full size 830points

 Raspberry Pi GPIO Adapter - T Cobbler (with ribbon cable)

 Connecting Wires - Male-Male, 65pcs (assorted-size)

 MicroSD Card with Raspberry Pi OS (8GB, class10)

 LED - Red (5mm)

 LED - Green (5mm)

 LED - Yellow (5mm)

 Push Button tactile switch (SPDT)

 Resistors (330 ohms 10pcs)

 Resistors (10k ohms 10pcs)

 Resistors (1k ohms 10pcs)

 LDR (Light Dependent Resistor)

 Power Supply Wall Adapter - 5V/2A (2000mA) (micro-USB)

 Raspberry Pi Case (Clear)

 MCP3008 - 8-Channel 10-Bit ADC With SPI Interface

 USB to RS232 Serial TTL Converter Cable (PL2303)

https://www.bitstoc.com/product/329/
https://www.bitstoc.com/product/123/
https://www.bitstoc.com/product/117/
https://www.bitstoc.com/product/107/
https://www.bitstoc.com/product/153/
https://www.bitstoc.com/product/111/
https://www.bitstoc.com/product/110/
https://www.bitstoc.com/product/144/
https://www.bitstoc.com/product/113/
https://www.bitstoc.com/product/177/
https://www.bitstoc.com/product/184/
https://www.bitstoc.com/product/181/
https://www.bitstoc.com/product/108/
https://www.bitstoc.com/product/259/
https://www.bitstoc.com/product/151/
https://www.bitstoc.com/product/152/
https://www.bitstoc.com/product/130/

WWW.BITSTOC.COM BitStoc Electronics Page 6

05 Download “git” software

We will download some software and library packages. We do this by using a software called “git”. Git
serves as a software for creating, saving or getting some codes in a database on the internet. Install git
software by typing the commands below. You may need and internet connection to install this.

You will be prompt that you have successfully installed the git software.

06 Programming the Pi

The 2 most accessible and compatible programming language to use for the Pi are:

1) Python Programming Language - using RPi.GPIO library
2) C Programming Language - using wiringPi library

In this experiment we will be trying out examples using the 2 programming languages to do task with
the electronics that we will connect to the Pi.

Python (RPi.GPIO library) is already included in the Raspbian OS package installed on the SD card. It is a
powerful scripting language. You may discover that with python some works we do in C or other
languages can be done in lesser code lines.

C (wiringPi library) is a software library written to allow C programs to be compiled and run on the Pi.
Later we will see the wiringPi is written almost the same with Arduino code format. This package is not
installed in any Raspberry Pi OS. You will need the Pi to be connected to the internet in order to
download this software. To install type the commands below.

Some commands may take a moment to process since it will be downloading and installing.

pi@raspberrypi: ~ cd
pi@raspberrypi: ~ sudo apt-get install git-core

pi@raspberrypi: ~ cd
pi@raspberrypi: ~ sudo git clone git://git.drogon.net/wiringPi
pi@raspberrypi: ~ cd wiringPi
pi@raspberrypi: ~ git pull origin
pi@raspberrypi: ~ cd wiringPi
pi@raspberrypi: ~./build

WWW.BITSTOC.COM BitStoc Electronics Page 7

Python software version

If you like to know the version of the Python you are using you can type the command below (it has two
“dash (-)” before the word “version). A python code ends with a “.py” file.

Create directory folders to store Python and C codes

Let us create a directory folder to save all our Python and C codes so it will be easier to locate the next
time we use this codes. To create a folder we will use the command mkdir. Type the commands below
and press Enter key after every line.

pi@raspberrypi: ~ cd
pi@raspberrypi: ~ mkdir python_examples
pi@raspberrypi: ~ mkdir c_examples
pi@raspberrypi: ~ ls

The first line directs as to the home directory since we will put the folder in our home directory to easily
locate our files. The second and third line creates a folder with its name. The fourth line tells the system
to list all the files and folders so we can check that we have successfully created the directory folders.

Now that we have created folders to save our python and C codes let’s start forming a circuit and
coding. Let’s go ahead and test some projects!

pi@raspberrypi: ~ python --version

WWW.BITSTOC.COM BitStoc Electronics Page 8

Example 1: Digital Output - Blink LED .

Fig. 1A

Fig. 1B

Our first experiment is to connect a button (Digital Input) to one of the pins of our Raspberry Pi.

Parts List:
*Raspberry Pi 3 Model B
*Raspberry Pi GPIO Adapter - T Cobbler (with ribbon cable)
*Breadboard - full size 830-points
*LED (Red)
*Resistor - 330 ohms
*Connecting Wires

WWW.BITSTOC.COM BitStoc Electronics Page 9

Assemble the circuit in Figure 1A. Your actual circuit would look like in Fig. 1B. You may zoom in your
view to see the wiring connections clearly. In this setup we connect an LED to PIN#23 of the Raspberry
Pi GPIO pin as extended by the GPIO Adapter board. PIN#23 is connected to one end of the 330 ohm
resistor and the other end of this resistor is connected to the long leg of the Orange LED. We connect a
wire from the Adapter board to the common Ground (GND) of the breadboard and then connect the
short leg of the LED to this Ground.

Note: As explained earlier for the Pin Numbering System we will be using the GPIO.BCM configuration
which means that what pin number we use in our code will base on the numbers written in the GPIO
Extension Adapter.

Python code (using RPi.GPIO library)

Let us now create a python script to blink the LED. We will store the python file in the directory folder
created earlier. First go to the created directly folder by issuing the commands below.

pi@raspberrypi: ~ cd
pi@raspberrypi: ~ cd python_examples

Now we are in the directory folder python_examples. Issue the commands below to create a blank text
file and name it Blink_GPIO_BCM.py

pi@raspberrypi: ~ sudo nano Blink_GPIO_BCM.py

You will then be directed to a blank text editor called “nano” text editor. Here, type the script found on
the Sample Python code below.

Sample Python code

include the library RPi.GPIO to use the GPIO of the Pi
import RPi.GPIO as GPIO
import time

Pin Definiton:
ledPin = 23

Pin Setup:
GPIO.setmode(GPIO.BCM)
GPIO.setup(ledPin, GPIO.OUT) # LED pin set as output

while True:
 GPIO.output(ledPin, GPIO.HIGH)
 print("LED is On")
 time.sleep(1)
 GPIO.output(ledPin, GPIO.LOW)
 print("LED is Off!")
 time.sleep(1)

Remember that there are “white” spaces in the editor so be sure to type in correctly every letter, lines with

space and tabs. You can only use your keyboard arrow keys to navigate to the blank space when you are in

the nano text editor.

WWW.BITSTOC.COM BitStoc Electronics Page 10

Your code would look like this below.

Now save the file by pressing in your keyboard Ctrl+x, then Y, then Enter.

To check if we have saved the python file in the directory folder, type the command below. This will list
all the files that is inside the directory.

pi@raspberrypi: ~ ls

Run the Python code!

To run the python script, issue the commands below. This command tells the computer to run a python
code with its assigned filename.

pi@raspberrypi: ~ sudo python Blink_GPIO_BCM.py

The Output
Congratulations! Your first python script is running!

WWW.BITSTOC.COM BitStoc Electronics Page 11

You should see that the LED is blinking every second. At the same time, a text will also appear on the
screen that tells the LED is either On or Off.

You just had your first python script! To cleanly exit simply press your keyboard’s Ctrl+C.

Code Explained
The second and third line of your code tells the system to use the RPi.GPIO library and also use a time
library which we use to set a 1 second delay. The sixth line assigns PIN#23 (using GPIO.BCM pin
numbering system, in the T Cobbler adapter) as the output pin for the LED. The ninth and tenth line use
GPIO.BCM Pin Numbering System and assign the pin for the LED as an output pin.

In the while loop, the code repeats showing ON and OFF text the Putty serial terminal and turning ON
and OFF of the attached LED every 1 second.

WWW.BITSTOC.COM BitStoc Electronics Page 12

Example #2: Digital Input - Push button .

Fig. 2A

Fig. 2B

Our second experiment is to connect a Push button tactile switch (Digital Input) to one of the pins of our
Raspberry Pi and display a text when the button is pressed (Switch Closed) or not pressed (Switch Open).

Parts List:
*Raspberry Pi 3 Model B
*Raspberry Pi GPIO Adapter - T Cobbler (with ribbon cable)
*Breadboard - full size 830-points
*Push Button tactile switch (SPDT)
*Resistor - 330 ohms
*Connecting Wires

WWW.BITSTOC.COM BitStoc Electronics Page 13

Assemble the circuit in Figure 2A. Your actual circuit would look like in Fig. 2B. In this setup we connect
one leg of the push button to PIN#17 of the Raspberry Pi GPIO pin through the GPIO Adapter board. The
other leg of the button is connected to the Ground.

Just like the previous experiment we will use Pin Numbering System GPIO.BCM configuration and on the
rest of the experiments in the following pages.

Python code (using RPi.GPIO library)

Now create a python script to read button presses. Since we are still in the directory folder
python_examples that we created from the previous experiment let’s create a new blank text file and
name it ButtonPress_GPIO_BCM.py by typing the command below.

pi@raspberrypi: ~ sudo nano ButtonPress_GPIO_BCM.py

In the blank text editor type the script found on the Sample Python code below. Use your keyboard
arrow keys to navigate to the blank spaces.

Sample Code

Now save the file by pressing in your keyboard Ctrl+x, then Y, then Enter.

Check if we have saved the python file in the directory folder, type the command below.

pi@raspberrypi: ~ ls

include the library RPi.GPIO to use the GPIO of the Pi
import RPi.GPIO as GPIO

Pin Definiton
inputpin = 17

Pin Setup
GPIO.setmode(GPIO.BCM)
GPIO.setup(inputpin, GPIO.IN, pull_up_down=GPIO.PUD_UP)

while True:
 if GPIO.input(inputpin):
 print ("Switch Open")
 else:
 print ("Switch Closed")

WWW.BITSTOC.COM BitStoc Electronics Page 14

Run the Python code!

Run the python script with the command below.

pi@raspberrypi: ~ sudo python ButtonPress_GPIO_BCM.py

The Output
Your python script is running.
You should see that in the screen a text “Switch Open” will appear since the button is not pressed. Now
press the push button and you will see a “Switch Closed” text in the screen.

To exit press your keyboard Ctrl+C.

Code Explained
The second line of the code means to use the RPi.GPIO library. The fifth line assigns PIN#17 (using
GPIO.BCM pin numbering system, in the T Cobbler adapter) as the input pin for the Push Button. The
eighth line means that we will use the GPIO.BCM Pin Numbering System. The ninth line tells the system
that will use inputpin (PIN#17) as an input and use the Pi’s built-in internal Pull-up resistor mechanism.

In the while loop, the code repeats in showing “Switch Open” if the button is not pressed and “Switch
Closed” if the button is pressed.

WWW.BITSTOC.COM BitStoc Electronics Page 15

Example #3: Analog Output (PWM) plus Digital Output/Input .

Fig. 3A

Fig. 3B

Our third experiment is to combine blinking LED (Digital Output), pressing a push button (Digital Input)
and demonstrate how to create a PWM output (Analog Output).

Parts List:
*Raspberry Pi 3 Model B
*Raspberry Pi GPIO Adapter - T Cobbler (with ribbon cable)
*Breadboard - full size 830-points
*Push Button tactile switch (SPDT)
*LED (Red)
*Resistor - 330 ohms
*Connecting Wires

WWW.BITSTOC.COM BitStoc Electronics Page 16

Assemble the circuit in Figure 3A. Your actual circuit would look like in Fig. 3B. In this setup we have
combined the circuit from Experiment 1 and Experiment 2 and added additional Green LED connected to
PIN#18 as output to show a PWM example. PIN#18 connects to one end of the 330 Ohm resistor and the
other end of this resistor connects to the long leg of the Green LED. The short leg of the Green LED is
connected to Ground.

Python code (using RPi.GPIO library)

Now create a python script to read button presses, blink an LED, output a PWM signal and display some
text. Still in the directory folder create a blank text file and name it Blink_Button_PWM.py by typing the
command below.

pi@raspberrypi: ~ sudo nano Blink_Button_PWM.py

On the blank editor type the script on the Sample Python code below and use your keyboard arrow keys
to navigate to the blank spaces.

Sample Code

Install external library to use using import command
import RPi.GPIO as GPIO
import time

Declare pin Variables
LED_pin = 23 # LED pin, BCM pin 23, BOARD pin 16
BUTTON_pin = 17 # Push Button pin, Active-low button, BCM pin 17, BOARD pin 11
PWM_pin = 18 # PWM LED, BCM pin 18, BOARD pin 12
dutyCycle = 80 # Duty cycle (from 0 to 100) for PWM pin

Setup pin configurations
GPIO.setmode(GPIO.BCM) # (Broadcom) BCM pin-numbering system
GPIO.setup(LED_pin, GPIO.OUT) # LED pin set as Output
GPIO.setup(BUTTON_pin, GPIO.IN, pull_up_down=GPIO.PUD_UP) # Push Button pin set as Input w/ Pull-up
GPIO.setup(PWM_pin, GPIO.OUT) # PWM pin set as Output
pwm = GPIO.PWM(PWM_pin, 50) # Initialize PWM on PWM_pin 100Hz frequency

Initial state for the LED’s
GPIO.output(LED_pin, GPIO.LOW)
pwm.start(dutyCycle)
print("Python script running... Press the Button to start PWM. Press CTRL+C to exit")
try:
 while 1:
 if GPIO.input(BUTTON_pin): # Push Button is not pressed
 pwm.ChangeDutyCycle(dutyCycle)
 GPIO.output(LED_pin, GPIO.LOW)
 else: # Push Button is pressed:
 print("Button is pressed, PWM running at PWM pin!")
 pwm.ChangeDutyCycle(100-dutyCycle)
 GPIO.output(LED_pin, GPIO.HIGH)
 time.sleep(0.05)
 GPIO.output(LED_pin, GPIO.LOW)
 time.sleep(0.05)
except KeyboardInterrupt: # Exit in the code cleanly when CTRL+C is pressed
 pwm.stop() # stop the PWM
 GPIO.cleanup() # Cleanup all the GPIO states

WWW.BITSTOC.COM BitStoc Electronics Page 17

Save the file by pressing in your keyboard Ctrl+x, then Y, then Enter.
Check if we have saved the python file in the directory folder with the command below.

pi@raspberrypi: ~ ls

Run the Python code!

Run the python script with the command below.

pi@raspberrypi: ~ sudo python Blink_Button_PWM.py

The Output
A text will display that your python script is now running. The Green LED will also light up. If you press
the push button in your circuit a message will display that it has been pressed and the PWM is running in
the PWM output pin PIN#18.

When the button is pressed you will also notice that the Green LED will slightly dim since we
programmed the PWM dutycycle to decrease . Also, the orange LED will blink continuously.

To exit press your keyboard Ctrl+C.

WWW.BITSTOC.COM BitStoc Electronics Page 18

Code Explained
This experiment combines the circuit and code of Experiment 1 and 2 and added one feature the Analog
Output (PWM). To demonstrate a PWM output we declared PIN#18 as the PWM pin.

The first group code lines calls the libraries to use. The second code group assigned variables for use.
The third group sets up the hardware configuration and assigned them as input, output and PWM pins.
The last code group executes the code and runs repeatedly for which when the button is pressed or not
and displays a message in the screen.

To understand more on what the code does, check back on the Sample Code above and check out
comments on each code lines.

WWW.BITSTOC.COM BitStoc Electronics Page 19

Example #4: Analog Input with MCP3008 .

Fig. 4A

Fig. 4B

In this Example number 4 we will use the MCP3008 Analog-to-Digital Converter IC (with SPI

Interface) to read analog input sensors and send them digitally to the Raspberry Pi (since the Pi does not
have Analog inputs). The Raspberry Pi’s SPI pins will connect to the MCP3008’s SPI pins to get those
digitized data that the Pi can now use. The chip can read up to 8 channels of Analog inputs so now we
can get analog data’s from sensors like the LDR light sensor or LM35 temperature sensor.

Parts List:
*Raspberry Pi 3 Model B
*Raspberry Pi GPIO Adapter - T Cobbler (with ribbon cable)
*Breadboard - full size 830-points
*LDR (light sensor, photocell)
*Resistor – 10k Ohms
*Connecting Wires

WWW.BITSTOC.COM BitStoc Electronics Page 20

Assemble the circuit on Figure 4A and your actual circuit should look like the one in Fig. 4B. You may
zoom in the image to clearly see the wiring connections.

Here we placed the MCP3008 chip on our breadboard and wire the SPI pins of the chip to the SPI pins of
the Raspberry Pi through the Pi GPIO Extension Adapter. A 10k Ohm resistor is connected to 3.3V power
rail and the other end of this resistor is connected to Channel 0 (CH0) of the MCP3008 chip. One leg of
the LDR is connected also in the CH0 of the MCP3008 and the other leg of the LDR is connected to
Ground. Review your MCP3008 and RPi pin wiring with the matching and the image below.

MCP3008 RPi (extension adapter board)
VDD to 3.3V
VREF to 3.3V
AGND to GROUND
CLK to SCLK
DOUT to MISO
DIN to MOSI
CS/SHDN to CE0
DGND to GROUND

The CH0-CH7 pins are the 8 Analog inputs.

Python code
Our circuit is ready. Let us now create our python script. We will store the python file in the same
directory folder created earlier. In your python_examples directory, create a blank text file named
rpi-analog-input-mcp3008.py by typing,

pi@raspberrypi: ~ sudo nano rpi-analog-input-mcp3008.py

In your nano text editor type in the python code below on the Sample Code section

WWW.BITSTOC.COM BitStoc Electronics Page 21

Sample Code

Save the file by pressing in your keyboard Ctrl+x, then Y, then Enter.
Enter the command ls in the Putty terminal and verify that the file rpi-analog-input-mcp3008.py is
listed.

Run the Python code!
To run the python script, issue the commands below in your Putty terminal.

pi@raspberrypi: ~ sudo python rpi-analog-input-mcp3008.py

import libraries to use
import spidev
import time

initialize SPI bus
spi = spidev.SpiDev()
spi.open(0,0)

function to read SPI data from MCP3008 IC, 8 channels (channel 0 to 7)
def readChannel(channel):
 adc = spi.xfer2([1,(8+channel)<<4,0])
 data = ((adc[1]&3) << 8) + adc[2]
 return data

Function to convert data to voltage level,
rounded to specified number of decimal places.
def convertVolts(data,place):
 volts = (data * 3.3) / float(1023)
 volts = round(volts,place)
 return volts

Define LDR sensor pin channel
ldr_pinChannel = 0

while True:

 # Read LDR light sensor data and convert to voltage
 ldr_value = readChannel(ldr_pinChannel)
 ldr_volts = convertVolts(ldr_value,2)

 # Print the data on the screen
 print "----------------------------"
 print("LDR Light : {} ({} Volts)".format(ldr_value,ldr_volts))

 # Put short delay for each reading
 time.sleep(1)

WWW.BITSTOC.COM BitStoc Electronics Page 22

The Output
Your python script for MCP3008 analog input is now running. A text will print out in the terminal the
reading of the LDR’s analog voltage in 0 to 1024 range and the equivalent 0 to 3.3 Volts range.

Now place your hand near and away from the LDR light sensor and you will notice the LDR light values
on your terminal will change. If you totally cover the LDR the value will approach to 1024 (3.3 Volts). If
you put a very bright light in the LDR the value will approach to 0 (0 Volts).

To exit simply press your keyboard’s Ctrl+C.

Code Explained
Check out the comments on each of the code line groups in our python code. Each code groups has its
own comments to describe what it does. The first parts is calling out the libraries to use. The second
initializes the SPI bus to use. Then we created a code function to read the data from the channel of the
MCP3008 Analog to Digital chip. We also created a function to convert the analog reading from 0-1023
into its voltage equivalent. In our while loop we read the analog data from the LDR pin (CH0) and
convert it to Volts and display them in the terminal. We also included a 1 second delay per analog
reading sequence.

Next up, we will try out how to run C programs on our Raspberry Pi using the wiringPi C program library.

WWW.BITSTOC.COM BitStoc Electronics Page 23

Example #5: Running C programs on the Pi .

Fig. 5A

Fig. 5B

The fifth experiment is the same circuit with Experiment #3. We combine blinking LED (Digital Output),
pressing a push button (Digital Input) and demonstrate how to create a PWM output (Analog Output)
but this time using the wiringPi C program library to run in our Raspberry Pi.

Parts List:
*Raspberry Pi 3 Model B
*Raspberry Pi GPIO Adapter - T Cobbler (with ribbon cable)
*Breadboard - full size 830-points
*Push Button tactile switch (SPDT)
*LED (Red)
*Resistor - 330 ohms
*Connecting Wires

WWW.BITSTOC.COM BitStoc Electronics Page 24

Assemble the circuit in Figure 5A and your actual circuit would look like in Fig. 5B. In this setup we have
the circuit from Experiment 1 and Experiment 2 combined and added additional Green LED connected to
PIN#18 to serve as PWM output LED. PIN#18 connects to one end of the 330 Ohm resistor and the other
end of this resistor connects to the long leg of the Green LED. The short leg of the Green LED is
connected to Ground.

In order to run C programs in the Raspberry Pi we will use a library called wiringPi. This wiringPi library
was written to compile C codes and translate it to run on the Pi. This library was designed to be
“Arduino-like” coding style and we will see this later in our example code.

C code (wiringPi library)
We have already installed and compiled our wiringPi library. If not, go back to Section 06 and come back
here to proceed.

Let’s go back to the home directory by typing cd in the terminal and press Enter. Next type in
cd c_examples and press Enter to go to the directory folder where we will save our C program file.

Now create a blank text file and name it Blinker_PWM.c by typing the command below. Notice that the
last letter is now “.c”.

pi@raspberrypi: ~ sudo nano Blinker_PWM.c

On the blank editor type the code found on the Sample C code below and remember to use your
keyboard arrow keys to navigate to the blank spaces.

WWW.BITSTOC.COM BitStoc Electronics Page 25

Sample C code

Save the file by pressing in your keyboard Ctrl+x, then Y, then Enter.

Enter the command ls in the Putty terminal and verify that the file Blinker_PWM.c is listed.

#include <stdio.h> // Use this for printf() statement
#include <wiringPi.h> // Use the wiringPi library

// Assign pin number variables. We will use GPIO.BCM pin numbering system
const int PWMpin = 18; // PWM LED, BCM pin 18, BOARD pin 12
const int LEDpin = 23; // LED pin, BCM pin 23, BOARD pin 16
const int BUTTONpin = 17; // Push Button pin, Active-low button, BCM pin 17, BOARD pin 11
const int PWMvalue = 250; // Set this for PWM LED brightness

int main(void)
{
 // Setup wiringPi GPIO pins
 wiringPiSetupGpio(); // Initialize wiringPi, this is using GPIO.BCM pin system

 pinMode(PWMpin, PWM_OUTPUT); // Set PWM LED as PWM Output
 pinMode(LEDpin, OUTPUT); // Set the normal LED as Output
 pinMode(BUTTONpin, INPUT); // Set Push Button as Input
 pullUpDnControl(BUTTONpin, PUD_UP); // Enable internal pull-up resistor on the Button

 printf("blinker is now running! Press CTRL+C to cleanly exit.\n");

 // repeating loop, while(1)
 while(1)
 {
 if (digitalRead(BUTTONpin)) // Button is not pressed, initially HIGH
 {
 pwmWrite(PWMpin, PWMvalue); // PWM LED is dim, low dutycycle
 digitalWrite(LEDpin, LOW); // normal LED is Off
 }
 else // Push button is pressed, digitalRead is now LOW
 {
 // PWM LED is now brighter, dutycycle up at around 77%
 pwmWrite(PWMpin, 1024 - PWMvalue);
 // we will blink the normal LED
 digitalWrite(LEDpin, HIGH); // normal LED is ON
 delay(75); // Wait for 75 ms
 digitalWrite(LEDpin, LOW); // normal LED is OFF
 delay(75); // Wait for 75 ms
 }
 }

 return 0;
}

WWW.BITSTOC.COM BitStoc Electronics Page 26

Compile the C code!
We first have to compile the code before we can run it, issue the commands below to do it.
Note: -o is (dash and small letter “O”), -l is (dash and small letter “L”)

pi@raspberrypi: ~ gcc -o blinker Blinker_PWM.c -l wiringPi

Then wait for 1 second to allow code compiling.
Note: The -l command is used to load the wiringPi library. The “blinker” is the C file to run in the system
(shown in the next step) and the Blinker_PWM.c is the C file that is compiled.

Now run the C code by typing below.

pi@raspberrypi: ~ sudo ./blinker

The Output
A text will display that your blinker C code is running. The Green LED (as the PWM output LED, PIN#18)
will slightly light up since the PWM output dutycycle is initially low. If you press the button in your circuit
the PWM dutycyle will increase (about 77%) so the Green LED will increase in brightness and the normal
LED (orange) will blink continuously.

To exit press your keyboard Ctrl+C.

WWW.BITSTOC.COM BitStoc Electronics Page 27

Code Explained
This experiment is the same with Experiment 3 but instead of running Python code we use C
programming codes with the use of wiringPi library. This experiment combines the circuit of Experiment
1 and 2 with Digital Input/Output with an additional Analog Output (PWM). We declared PIN#18 as the
PWM pin and the PWM value will vary from 0 to 1024.

In our code we included comments on each code lines so we can check at what each of this line does.

In the first 2 lines we included library to allow printing text using printf() statement and and also to
install the wiringPi C programs library. In the second code group we assigned some variables to use. In
the third code group where we have our main code activity we initialized the wiringPi library, assigned
the variable to be Input/Output and in the repeating while() loop is our PWM, LED blinking and push
button code.

Going Further and What’s next!

We have just learned some examples on how to use the Raspberry Pi’s GPIO ports by connecting
buttons, blinking LED’s and connect a sensor. And we have tried running C codes too!

The Raspberry Pi is a powerful all-in-one computer. It can do some basic and complex programs too!

In the upcoming guides we will learn more about other applications involving the Pi that may tackle
Raspberry Pi’s SPI interface, i2c protocol, UART, and web applications. We will also try to discover on
how to interface with other sensor boards, a web server, connection to Arduino/ESP8266, IoT (internet
of things) application, robotics, interfacing with other language like Javascript and much more!

Links and Resources

You will find more information and explore on some of the links below.

https://www.raspberrypi.org/ - Raspberry Pi Organization official site and info

http://wiringpi.com/ , https://projects.drogon.net/raspberry-pi/wiringpi/ - information page about
the wiringPi c programming library for Pi

http://elinux.org/RPi_Low-level_peripherals - Raspberry Pi low level peripheral information

https://pypi.python.org/pypi/RPi.GPIO - more Raspberry Pi information about the GPIO

https://www.raspberrypi.org/
http://wiringpi.com/
https://projects.drogon.net/raspberry-pi/wiringpi/
http://elinux.org/RPi_Low-level_peripherals
https://pypi.python.org/pypi/RPi.GPIO

WWW.BITSTOC.COM BitStoc Electronics Page 28

Hardware parts for Raspberry Pi computer

 Raspberry PI 3 Model B+ (B plus)

 Breadboard solderless - Full size 830points

 Raspberry Pi GPIO Adapter - T Cobbler (with ribbon cable)

 Connecting Wires - Male-Male, 65pcs (assorted-size)

 MicroSD Card with Raspberry Pi OS (8GB, class10)

 LED - Red (5mm)

 LED - Green (5mm)

 LED - Yellow (5mm)

 Push Button tactile switch (SPDT)

 Resistors (330 ohms 10pcs)

 Resistors (10k ohms 10pcs)

 Resistors (1k ohms 10pcs)

 LDR (Light Dependent Resistor)

 Power Supply Wall Adapter - 5V/2A (2000mA) (micro-USB)

 Raspberry Pi Case (Clear)

 MCP3008 - 8-Channel 10-Bit ADC With SPI Interface

 USB to RS232 Serial TTL Converter Cable (PL2303)

https://www.bitstoc.com/product/329/
https://www.bitstoc.com/product/123/
https://www.bitstoc.com/product/117/
https://www.bitstoc.com/product/107/
https://www.bitstoc.com/product/153/
https://www.bitstoc.com/product/111/
https://www.bitstoc.com/product/110/
https://www.bitstoc.com/product/144/
https://www.bitstoc.com/product/113/
https://www.bitstoc.com/product/177/
https://www.bitstoc.com/product/184/
https://www.bitstoc.com/product/181/
https://www.bitstoc.com/product/108/
https://www.bitstoc.com/product/259/
https://www.bitstoc.com/product/151/
https://www.bitstoc.com/product/152/
https://www.bitstoc.com/product/130/

